Lower Limb Joint Torque Prediction Using Long Short-Term Memory Network and Gaussian Process Regression

Author:

Wang Mengsi12,Chen Zhenlei3,Zhan Haoran12,Zhang Jiyu4ORCID,Wu Xinglong12,Jiang Dan5,Guo Qing12ORCID

Affiliation:

1. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, Chengdu 611731, China

3. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

4. School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

5. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

The accurate prediction of joint torque is required in various applications. Some traditional methods, such as the inverse dynamics model and the electromyography (EMG)-driven neuromusculoskeletal (NMS) model, depend on ground reaction force (GRF) measurements and involve complex optimization solution processes, respectively. Recently, machine learning methods have been popularly used to predict joint torque with surface electromyography (sEMG) signals and kinematic information as inputs. This study aims to predict lower limb joint torque in the sagittal plane during walking, using a long short-term memory (LSTM) model and Gaussian process regression (GPR) model, respectively, with seven characteristics extracted from the sEMG signals of five muscles and three joint angles as inputs. The majority of the normalized root mean squared error (NRMSE) values in both models are below 15%, most Pearson correlation coefficient (R) values exceed 0.85, and most decisive factor (R2) values surpass 0.75. These results indicate that the joint prediction of torque is feasible using machine learning methods with sEMG signals and joint angles as inputs.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3