QRS Differentiation to Improve ECG Biometrics under Different Physical Scenarios Using Multilayer Perceptron

Author:

Tirado-Martin PalomaORCID,Liu-Jimenez JudithORCID,Sanchez-Casanova JorgeORCID,Sanchez-Reillo RaulORCID

Abstract

Currently, machine learning techniques are successfully applied in biometrics and Electrocardiogram (ECG) biometrics specifically. However, not many works deal with different physiological states in the user, which can provide significant heart rate variations, being these a key matter when working with ECG biometrics. Techniques in machine learning simplify the feature extraction process, where sometimes it can be reduced to a fixed segmentation. The applied database includes visits taken in two different days and three different conditions (sitting down, standing up after exercise), which is not common in current public databases. These characteristics allow studying differences among users under different scenarios, which may affect the pattern in the acquired data. Multilayer Perceptron (MLP) is used as a classifier to form a baseline, as it has a simple structure that has provided good results in the state-of-the-art. This work studies its behavior in ECG verification by using QRS complexes, finding its best hyperparameter configuration through tuning. The final performance is calculated considering different visits for enrolling and verification. Differentiation in the QRS complexes is also tested, as it is already required for detection, proving that applying a simple first differentiation gives a good result in comparison to state-of-the-art similar works. Moreover, it also improves the computational cost by avoiding complex transformations and using only one type of signal. When applying different numbers of complexes, the best results are obtained when 100 and 187 complexes in enrolment, obtaining Equal Error Rates (EER) that range between 2.79–4.95% and 2.69–4.71%, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Automatic diagnosis of the 12-lead ECG using a deep neural network

2. Clinical Electrocardiography: A Simplified Approach E-Book;Goldberger,2017

3. Machine learning in biomedical signal processing with ECG applications

4. Schematic Diagram of Normal Sinus Rhythm for a Human Heart as Seen on ECG. Public Domainhttps://en.wikipedia.org/wiki/File:SinusRhythmLabels.png

5. An Introduction to Biometric Recognition

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3