Abstract
Nowadays, Deep Learning tools have been widely applied in biometrics. Electrocardiogram (ECG) biometrics is not the exception. However, the algorithm performances rely heavily on a representative dataset for training. ECGs suffer constant temporal variations, and it is even more relevant to collect databases that can represent these conditions. Nonetheless, the restriction in database publications obstructs further research on this topic. This work was developed with the help of a database that represents potential scenarios in biometric recognition as data was acquired in different days, physical activities and positions. The classification was implemented with a Deep Learning network, BioECG, avoiding complex and time-consuming signal transformations. An exhaustive tuning was completed including variations in enrollment length, improving ECG verification for more complex and realistic biometric conditions. Finally, this work studied one-day and two-days enrollments and their effects. Two-days enrollments resulted in huge general improvements even when verification was accomplished with more unstable signals. EER was improved in 63% when including a change of position, up to almost 99% when visits were in a different day and up to 91% if the user experienced a heartbeat increase after exercise.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference36 articles.
1. The Perceptron, a Perceiving and Recognizing Automaton Project Para;Rosenblatt,1957
2. Deep learning: Evolution and expansion
3. A Fast Learning Algorithm for Deep Belief Nets
4. Clinical Electrocardiography: A Simplified Approach E-Book;Goldberger,2017
5. Geometrical aspects of the interindividual variability of multilead ECG recordings
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献