Investigating the Physics of Tokamak Global Stability with Interpretable Machine Learning Tools

Author:

Murari Andrea,Peluso EmmanueleORCID,Lungaroni MicheleORCID,Rossi RiccardoORCID,Gelfusa MichelaORCID,

Abstract

The inadequacies of basic physics models for disruption prediction have induced the community to increasingly rely on data mining tools. In the last decade, it has been shown how machine learning predictors can achieve a much better performance than those obtained with manually identified thresholds or empirical descriptions of the plasma stability limits. The main criticisms of these techniques focus therefore on two different but interrelated issues: poor “physics fidelity” and limited interpretability. Insufficient “physics fidelity” refers to the fact that the mathematical models of most data mining tools do not reflect the physics of the underlying phenomena. Moreover, they implement a black box approach to learning, which results in very poor interpretability of their outputs. To overcome or at least mitigate these limitations, a general methodology has been devised and tested, with the objective of combining the predictive capability of machine learning tools with the expression of the operational boundary in terms of traditional equations more suited to understanding the underlying physics. The proposed approach relies on the application of machine learning classifiers (such as Support Vector Machines or Classification Trees) and Symbolic Regression via Genetic Programming directly to experimental databases. The results are very encouraging. The obtained equations of the boundary between the safe and disruptive regions of the operational space present almost the same performance as the machine learning classifiers, based on completely independent learning techniques. Moreover, these models possess significantly better predictive power than traditional representations, such as the Hugill or the beta limit. More importantly, they are realistic and intuitive mathematical formulas, which are well suited to supporting theoretical understanding and to benchmarking empirical models. They can also be deployed easily and efficiently in real-time feedback systems.

Funder

H2020 Euratom

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3