A hybrid physics/data-driven logic to detect, classify, and predict anomalies and disruptions in tokamak plasmas

Author:

Rossi R.ORCID,Gelfusa M.ORCID,Craciunescu T.ORCID,Wyss I.ORCID,Vega J.ORCID,

Abstract

Abstract Disruptions are abrupt collapses of the configuration that have afflicted all tokamaks ever operated. Reliable observers are a prerequisite to the definition and the deployment of any realistic strategy of countermeasures to avoid or mitigate disruptions. Lacking first principle models of the dynamics leading to disruptions, in the past decades empirical predictors have been extensively studied and some were even installed in JET real time network. Having been conceived as engineering tools, they were often very abstract. In this work, physics and data-driven methodologies are combined to identify the main macroscopic precursors of disruptions: magnetic instabilities, abnormal kinetic profiles and radiation patterns. Machine learning predictors utilising these observers can not only detect and classify these anomalies but also determine their probability of occurrence and estimate the time remaining before their onset. These tools have been applied to a database of about two thousand JET discharges with various isotopic compositions including DT, in conditions simulating in all respects real time deployment. Their performance would meet ITER requirements, and they are expected to be easily transferrable to larger devices, because they rely only on normalised quantities, form factors, and physical/empirical scaling laws.

Funder

EUROfusion

Publisher

IOP Publishing

Reference73 articles.

1. MHD stability, operational limits and disruptions;Hender;Nucl. Fusion,2007

2. Disruptions in ITER and strategies for their control and mitigation;Lehnen;J. Nucl. Mater.,2015

3. The impact of the ITER-like wall at JET on disruptions;De Vries;Plasma Phys. Control. Fusion,2012

4. Survey of disruption causes at JET;de Vries;Nucl. Fusion,2011

5. Challenges of disruption mitigation in ITER;Lehnen,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing disruption prediction through Bayesian neural network in KSTAR;Plasma Physics and Controlled Fusion;2024-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3