Thermal Deformation Defect Prediction for Layered Printing Using Convolutional Generative Adversarial Network

Author:

Xu JinghuaORCID,Wang KangORCID,Zhang Shuyou,Yi GuodongORCID,Tan Jianrong,Luo Sheng,Pang Jihong

Abstract

This paper presents a Thermal Deformation defect prediction method for layered printing using Convolutional Generative Adversarial Network (CGAN). Firstly, the original manifold mesh is converted into layered image in Printing Coordinate System (PCS). The trajectory inside layered image with various infill patterns are generated for making comparisons. Inspired by monocular vision and even binocular vision, the mathematical model of thermal defect prediction via infrared thermogram is built via virtual printing of Digital Twins to preset the initial parameters of Artificial Neural Network (ANN). Particularly, the depth convolution is used to extract multi-scale features of layered image. By using transfer learning techniques to identify small sample data, the CGAN is employed to build the nonlinear implicit relations between thermal deformation and multi-scale features. The binocular stereo vision laser scanner is used to determine the actual thermal deformation of the target printed objects. The shape deformation dissimilarity can be succinctly calculated by evaluating the surface profile error via mesh registration between the original source and target mesh model. The proposed method is verified by physical experiments. The experiment proved that the proposed method can deal with the thermal deformation with more optimal parameters, which contributes to performance forward design of irregular complex parts regarding diversified customized requirements.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In situ monitoring for numerical controlled manufacturing of large conceptual prototype based on multi-view stitching fusion;The International Journal of Advanced Manufacturing Technology;2023-08-16

2. DEEP LEARNING IN HEAT TRANSFER;Annual Review of Heat Transfer;2022

3. Antivibration and energy efficiency design for large stroke additive manufacturing based on dynamic trajectory adaption;The International Journal of Advanced Manufacturing Technology;2021-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3