Abstract
This paper presents a Thermal Deformation defect prediction method for layered printing using Convolutional Generative Adversarial Network (CGAN). Firstly, the original manifold mesh is converted into layered image in Printing Coordinate System (PCS). The trajectory inside layered image with various infill patterns are generated for making comparisons. Inspired by monocular vision and even binocular vision, the mathematical model of thermal defect prediction via infrared thermogram is built via virtual printing of Digital Twins to preset the initial parameters of Artificial Neural Network (ANN). Particularly, the depth convolution is used to extract multi-scale features of layered image. By using transfer learning techniques to identify small sample data, the CGAN is employed to build the nonlinear implicit relations between thermal deformation and multi-scale features. The binocular stereo vision laser scanner is used to determine the actual thermal deformation of the target printed objects. The shape deformation dissimilarity can be succinctly calculated by evaluating the surface profile error via mesh registration between the original source and target mesh model. The proposed method is verified by physical experiments. The experiment proved that the proposed method can deal with the thermal deformation with more optimal parameters, which contributes to performance forward design of irregular complex parts regarding diversified customized requirements.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献