Tool Wear Monitoring for Complex Part Milling Based on Deep Learning

Author:

Zhang Xiaodong,Han Ce,Luo MingORCID,Zhang Dinghua

Abstract

Tool wear monitoring is necessary for cost reduction and productivity improvement in the machining industry. Machine learning has been proven to be an effective means of tool wear monitoring. Feature engineering is the core of the machining learning model. In complex parts milling, cutting conditions are time-varying due to the variable engagement between cutting tool and the complex geometric features of the workpiece. In such cases, the features for accurate tool wear monitoring are tricky to select. Besides, usually few sensors are available in an actual machining situation. This causes a high correlation between the hand-designed features, leading to the low accuracy and weak generalization ability of the machine learning model. This paper presents a tool wear monitoring method for complex part milling based on deep learning. The features are pre-selected based on cutting force model and wavelet packet decomposition. The pre-selected cutting forces, cutting vibration and cutting condition features are input to a deep autoencoder for dimension reduction. Then, a deep multi-layer perceptron is developed to estimate the tool wear. The dataset is obtained with a carefully designed varying cutting depth milling experiment. The proposed method works well, with an error of 8.2% on testing samples, which shows an obvious advantage over the classic machine learning method.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Shaanxi Key Research and Development Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3