Development of Pump-Drive Turbine Module with Hydrostatic Bearing for Supercritical CO2 Power Cycle Application

Author:

Lee DonghyunORCID,Kim Byungock,Park Mooryong,Lim Hyungsoo,Yoon Euisoo

Abstract

The turbomachinery used in the sCO2 power cycle requires a high stable rotor-bearing system because they are usually designed to operate in extremely high-pressure and temperature conditions. In this paper, we present a pump-drive turbine module applying hydrostatic bearing using liquid CO2 as the lubricant for a 250 kW supercritical CO2 power cycle. This design is quite favorable because stable operation is possible due to the high stiffness and damping of the hydrostatic bearing, and the oil purity system is not necessary when using liquid CO2 as the lubricant. The pump-drive turbine module was designed to operate at 21,000 rpm with the rated power of 143 kW. The high-pressure liquid CO2 was supplied to the bearing, and the orifice restrictor was used for the flow control device. We selected the orifice diameter providing the maximum bearing stiffness and also conducted a rotordynamic performance prediction based on the designed pump-drive turbine module. The predicted Campbell diagram indicates that a wide range of operation is possible because there is no critical speed below the rated speed. In addition, an operation test was conducted for the manufactured pump-drive turbine module in the supercritical CO2 cycle test loop. During the operation, the pressurized CO2 of the 70 bar was supplied to the bearing for the lubrication and the shaft vibration was monitored. The successful operation was possible up to the rated speed and the test results showed that shaft vibration is controlled at the level of 2 μm for the entire speed range.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Study of Rotor Vibrations on Oil-Lubricated Foil Bearings of Various Designs;Journal of Vibration Engineering & Technologies;2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3