Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop

Author:

Conboy T.1,Pasch J.,Fleming D.2

Affiliation:

1. Mem. ASME e-mail:

2. Advanced Nuclear Concepts, Sandia National Laboratories, P.O. Box 5800, MS 1136, Albuquerque, NM 87185

Abstract

The U.S. Department of Energy is currently focused on the development of next-generation nuclear power reactors, with an eye towards improved efficiency and reduced capital cost. To this end, reactors using a closed-Brayton power conversion cycle have been proposed as an attractive alternative to steam turbines. The supercritical-CO2 recompression cycle has been identified as a leading candidate for this application since it can achieve high efficiency at relatively low operating temperatures with extremely compact turbomachinery. Sandia National Laboratories has been a leader in hardware and component development for the supercritical-CO2 cycle. With contractor Barber-Nichols Inc., Sandia has constructed a megawatt-class S-CO2 cycle test-loop to investigate the key areas of technological uncertainty for this power cycle and to confirm model estimates of advantageous thermodynamic performance. Until recently, much of the work has centered on the simple S-CO2 cycle—a recuperated Brayton loop with a single turbine and compressor. However, work has recently progressed to a recompression cycle with split-shaft turbo-alternator-compressors, unlocking the potential for much greater efficiency power conversion, but introducing greater complexity in control operations. The following sections use testing experience to frame control actions made by test loop operators in bringing the recompression cycle from cold startup conditions through transition to power generation on both turbines, to the desired test conditions, and finally to a safe shutdown. During this process, considerations regarding the turbocompressor thrust state, CO2 thermodynamic state at the compressor inlet, compressor surge and stall, turbine u/c ratio, and numerous other factors must be taken into account. The development of these procedures on the Sandia test facility has greatly reduced the risk to industry in commercial development of the S-CO2 power cycle.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference10 articles.

1. Real Gas Effects in Carbon Dioxide Cycles,1969

2. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors,2004

3. Operation and Analysis of a Supercritical CO2 Brayton Cycle,2010

4. Wright, S., Fuller, R., Noall, J., Radel, R., Vernon, M., and Pickard, P., 2008, “Supercritical CO2 Brayton Cycle Compression and Control Near the Critical Point,” Proceedings of the International Congress on Advances in Nuclear Power Plants, Anaheim, CA, June 8–10.

5. Real Gas Effects in Foil Thrust Bearings Operating in the Turbulent Regime;ASME J. Tribol,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3