Major Consequences of Land-Use Changes for Ecosystems in the Future in the Agro-Pastoral Transitional Zone of Northern China

Author:

Xu Xia,Jiang Honglei,Wang Lingfei,Guan Mengxi,Zhang Tong,Qiao Shirong

Abstract

Assessing the effects of future land use and land cover change (LULC) on ecological processes and functions is crucial for improving regional sustainability in arid and semiarid areas. Taking the Agro-Pastoral Transitional Zone of Northern China (APTZNC) as an example, four IPCC Special Report on Emissions Scenarios scenarios (Scenario of economic emphasis on a regional scale (A1B), Scenario of economic emphasis on a global scale (A2), Scenario of environmental protection on a regional scale (B1), Scenario of environmental protection on a global scale (B2)) were adopted in the study to analyze the influence of the future land use and land cover change on the net primary production (NPP), soil organic matter (SOM), soil total nitrogen (TN), and soil erosion (ERO) using the model of Terrestrial Ecosystem Simulator-Land use/land cover model (TES-LUC) linking ecological processes and land-use change dynamics. The results were analyzed from the perspectives of LULC components, LULC conversions, and landscape patterns under the four scenarios. The main results include the following: (1) Environmentally oriented scenarios (A1B and B1) experienced the conservation of forest and grassland; economically oriented scenarios (A2 and B2) were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. (2) The NPP and soil nutrients are the highest while the ERO is the lowest in the woodland; the trend in cultivated land is opposite to that in woodland; the grassland ecosystem function is relatively stable and could make an important contribution to effectively mitigate global climate change. (3) The general trend in NPP, SOM, and TN under the four scenarios is B1 > A1B > baseline (2010) > B2 > A2, and that in ERO is A2 > B2 > baseline (2010) > A1B > B1. (4) Trade-offs between ecosystem functions and the ecological effects of LULC can be evaluated and formulated into decision-making.

Funder

The Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference97 articles.

1. Global Land-Use/Land-Cover Change: Towards an Integrated Study;Turner;Ambio,1994

2. Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review

3. Integrative modeling and strategic planning for regional sustainability under climate change;Wu;Adv. Earth Sci.,2014

4. Assessment of the Future Climate Change Projections on Streamflow Hydrology and Water Availability over Upper Xijiang River Basin, China

5. Solutions for a cultivated planet

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3