Assessment of the Future Climate Change Projections on Streamflow Hydrology and Water Availability over Upper Xijiang River Basin, China

Author:

Touseef MuhammadORCID,Chen Lihua,Masud Tabinda,Khan Aziz,Yang KaipengORCID,Shahzad Aamir,Wajid Ijaz Muhammad,Wang Yan

Abstract

Hydrological models are widely applied for simulating complex watershed processes and directly linking meteorological, topographical, land-use, and geological conditions. In this study, the Soil and Water Assessment Tool (SWAT) was calibrated at two monitoring stations, which improved model performance and increased the reliability of flow predictions in the Upper Xijiang River Basin. This study evaluated the potential impacts of climate change on the streamflow and water yield of the Upper Xijiang River Basin using Arc-SWAT. The model was calibrated (1991–1997) and validated (1998–2001) using the Sequential Uncertainty Fitting Algorithm (SUFI-2). Model calibration and validation suggest a good match between the measured and simulated monthly streamflow, indicating the applicability of the model for future daily streamflow predictions. Large negative changes of low flows are projected under future climate scenarios, exhibiting a 10% and 30% decrease in water yield over the watershed on a monthly scale. Overall, findings generally indicated that winter flows are expected to be affected the most, with a maximum impact during the January–April period, followed by the wet monsoon season in the May–September period. Water balance components of the Upper Xijiang River Basin are expected to change significantly due to the projected climate change that, in turn, will seriously affect the water resources and streamflow patterns in the future. Thus, critical problems, such as ground water shortages, drops in agricultural crop yield, and increases in domestic water demand are expected at the Xijiang River Basin.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3