Abstract
Industrial robot manipulators are playing a significant role in modern manufacturing industries. Though peg-in-hole assembly is a common industrial task that has been extensively researched, safely solving complex, high-precision assembly in an unstructured environment remains an open problem. Reinforcement-learning (RL) methods have proven to be successful in autonomously solving manipulation tasks. However, RL is still not widely adopted in real robotic systems because working with real hardware entails additional challenges, especially when using position-controlled manipulators. The main contribution of this work is a learning-based method to solve peg-in-hole tasks with hole-position uncertainty. We propose the use of an off-policy, model-free reinforcement-learning method, and we bootstraped the training speed by using several transfer-learning techniques (sim2real) and domain randomization. Our proposed learning framework for position-controlled robots was extensively evaluated in contact-rich insertion tasks in a variety of environments.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference46 articles.
1. A review of robot learning for manipulation: Challenges, representations, and algorithms;Kroemer;arXiv,2019
2. Quasi-Static Assembly of Compliantly Supported Rigid Parts
3. Force control for a rigid dual peg-in-hole assembly
Cited by
108 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献