Image Super-Resolution Algorithm Based on Dual-Channel Convolutional Neural Networks

Author:

Chen YuantaoORCID,Wang JinORCID,Chen Xi,Sangaiah Arun KumarORCID,Yang Kai,Cao Zhouhong

Abstract

For the image super-resolution method from a single channel, it is difficult to achieve both fast convergence and high-quality texture restoration. By mitigating the weaknesses of existing methods, the present paper proposes an image super-resolution algorithm based on dual-channel convolutional neural networks (DCCNN). The novel structure of the network model was divided into a deep channel and a shallow channel. The deep channel was used to extract the detailed texture information from the original image, while the shallow channel was mainly used to recover the overall outline of the original image. Firstly, the residual block was adjusted in the feature extraction stage, and the nonlinear mapping ability of the network was enhanced. The feature mapping dimension was reduced, and the effective features of the image were obtained. In the up-sampling stage, the parameters of the deconvolutional kernel were adjusted, and high-frequency signal loss was decreased. The high-resolution feature space could be rebuilt recursively using long-term and short-term memory blocks during the reconstruction stage, further enhancing the recovery of texture information. Secondly, the convolutional kernel was adjusted in the shallow channel to reduce the parameters, ensuring that the overall outline of the image was restored and that the network converged rapidly. Finally, the dual-channel loss function was jointly optimized to enhance the feature-fitting ability in order to obtain the final high-resolution image output. Using the improved algorithm, the network converged more rapidly, the image edge and texture reconstruction effect were obviously improved, and the Peak Signal-to-Noise Ratio (PSNR) and structural similarity were also superior to those of other solutions.

Funder

National Natural Science Foundation of China

the Open Research Fund of Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3