Super-Resolution Approach to Enhance Bone Marrow Trephine Image in the Classification of Classical Myeloproliferative Neoplasms

Author:

Mohamad Yusof Umi Kalsom,Mashohor Syamsiah,Hanafi Marsyita,Md Noor Sabariah,Zainal Norsafina

Abstract

Many diseases require histopathology images to characterise biological components or study cell and tissue architectures. The histopathology images are also essential in supporting disease classification, including myeloproliferative neoplasms (MPN). Despite significant developments to improve the diagnostic tools, morphological assessment from histopathology images obtained by bone marrow trephine (BMT) remains crucial to confirm MPN subtypes. However, the assessment outcome is challenging due to subjective characteristics that are hard to replicate due to its inter-observer variability. Apart from that, image processing may reduce the quality of the BMT images and affect the diagnosis result. This study has developed a classification system for classical MPN subtypes: polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). It was done by reconstructing low-resolution images of BMT using a super-resolution approach to address the issue. Identified low-resolution images from calculating Laplacian variance were reconstructed using a super-resolution convolution neural network (SRCNN) to transform into rich information of high-resolution images. Original BMT images and reconstructed BMT images using the SRCNN dataset were fed into a CNN classifier, and the classifier’s output for both datasets was compared accordingly. Based on the result, the dataset consisting of the reconstructed images showed better output with 92% accuracy, while the control images gave 88% accuracy. In conclusion, the high quality of histopathology images substantially impacts disease process classification, and the reconstruction of low-resolution images has improved the classification output.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3