Abstract
It is crucial to control the temperature of solar cells for enhancing efficiency with the increasing power intensity of multiple photovoltaic systems. In order to improve the heat transfer efficiency, a microchannel heat sink (MCHS) with V-ribs using a water-based nanofluid as a coolant for micro solar cells was designed. Numerical simulations were carried out to investigate the flows and heat transfers in the MCHS when the Reynolds number ranges from 200 to 1000. The numerical results showed that the periodically arranged V-ribs can interrupt the thermal boundary, induce chaotic convection, increase heat transfer area, and subsequently improve the heat transfer performance of a MCHS. In addition, the preferential values of the geometric parameters of V-ribs and the physical parameters of the nanofluid were obtained on the basis of the Nusselt numbers at identical pump power. For MCHS with V-ribs on both the top and bottom wall, preferential values of V-rib are rib width d / W = 1 , flare angle α = 75 ° , rib height h r / H = 0.3 , and ratio of two slant sides b / a = 0.75 , respectively. This can provide sound foundations for the design of a MCHS in micro solar cells.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献