Two-Phase Lattice Boltzmann Study on Heat Transfer and Flow Characteristics of Nanofluids in Solar Cell Cooling

Author:

Liu Hui1ORCID,Bao Minle1ORCID,Gong Luyuan1,Shen Shengqiang1,Guo Yali1ORCID

Affiliation:

1. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China

Abstract

During solar cell operation, most light energy converts to heat, raising the battery temperature and reducing photoelectric conversion efficiency. Thus, lowering the temperature of solar cells is essential. Nanofluids, with their superior heat transfer capabilities, present a potential solution to this issue. This study investigates the mechanism of enhanced heat transfer by nanofluids in two-dimensional rectangular microchannels using the two-phase lattice Boltzmann method. The results indicate a 3.53% to 22.40% increase in nanofluid heat transfer, with 0.67% to 6.24% attributed to nanoparticle–fluid interactions. As volume fraction (φ) increases and particle radius (R) decreases, the heat transfer capability of the nanofluid improves, while the frictional resistance is almost unaffected. Therefore, the performance evaluation criterion (PEC) of the nanofluid increases, reaching a maximum value of 1.225 at φ = 3% and R = 10 nm. This paper quantitatively analyzes the interaction forces and thermal physical parameters of nanofluids, providing insights into their heat transfer mechanisms. Additionally, the economic feasibility of nanofluids is examined, facilitating their practical application, particularly in solar cell cooling.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3