Prevalence, Antimicrobial Resistance, and Whole Genome Sequencing Analysis of Shiga Toxin-Producing Escherichia coli (STEC) and Enteropathogenic Escherichia coli (EPEC) from Imported Foods in China during 2015–2021

Author:

Shen JinlingORCID,Zhi Shuai,Guo Dehua,Jiang Yuan,Xu Xuebin,Zhao Lina,Lv Jingzhang

Abstract

Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) are foodborne pathogens that cause hemolytic uremic syndrome and fatal infant diarrhea, respectively, but the characterization of these bacteria from imported food in China are unknown. A total of 1577 food samples from various countries during 2015–2021 were screened for STEC and EPEC, and the obtained isolates were tested for antimicrobial resistance and whole genome sequencing analysis was performed. The prevalence of STEC and EPEC was 1.01% (16/1577) and 0.51% (8/1577), respectively. Antimicrobial resistances to tetracycline (8%), chloramphenicol (8%), ampicillin (4%), ceftazidime (4%), cefotaxime (4%), and trimethoprim-sulfamethoxazole (4%) were observed. The antimicrobial resistance phenotypes corresponded with genotypes for most strains, and some resistance genes were related to mobile genetic elements. All 16 STEC isolates were eae negative, two solely contained stx1 (stx1a or stx1c), 12 merely carried stx2 (stx2a, stx2d, or stx2e), and two had both stx1 and stx2 (stx1c + stx2b, stx1a + stx2a + stx2c). Although they were eae negative, several STEC isolates carried other adherence factors, such as iha (5/16), sab (1/16), and lpfA (8/16), and belonged to serotypes (O130:H11, O8:H19, and O100:H30) or STs (ST297, ST360), which have caused human infections. All the eight EPEC isolates were atypical EPEC; six serotypes and seven STs were found, and clinically relevant EPEC serotypes O26:H11, O103:H2, and O145:H28 were identified. Two STEC/ETEC (enterotoxigenic E. coli) hybrids and one EPEC/ETEC hybrid were observed, since they harbored sta1 and/or stb. The results revealed that food can act as a reservoir of STEC/EPEC with pathogenic potential, and had the potential ability to transfer antibiotic resistance and virulence genes.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Shanghai

Shanghai entry and exit food and feed safety technical service platform

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3