Abstract
Botanical pesticides have received increasing attention for sustainable control of insect pests. Plants from the genus Tephrosia are known to produce rotenone and deguelin. Rotenone is known to possess insecticidal activities against a wide range of pests, but deguelin’s activities remain largely inconclusive. On the other hand, the biosynthesis of rotenone and deguelin may vary in Tephrosia species. This study analyzed the rotenone and deguelin contents in 13 strains across 4 Tephrosia species over 4 growing seasons using HPLC. Our study shows that the species and even the strains within a species vary substantially in the biosynthesis of rotenone and deguelin, and their contents can be affected by the growing season. After identification of the LC50 values of chemical rotenone and deguelin against Aphis gossypii (Glover) and Bemisia tabaci (Gennadius), leaf extracts derived from the 13 strains were used to test their insecticidal activities against the 2 pests. The results showed that the extracts derived from 2 strains of T. vogelii had the highest insecticidal activity, resulting in 100% mortality of A. gossypii and greater than 90% mortality of B. tabaci. The higher mortalities were closely associated with the higher contents of rotenone and deguelin in the two strains, indicating that deguelin also possesses insecticidal activities. This is the first documentation of leaf extracts derived from 13 Tephrosia strains against 2 important pests of A. gossypii and B. tabaci. The strain variation and seasonal influence on the rotenone and deguelin contents call for careful attention in selecting appropriate strains and seasons to produce leaf extracts for the control of insect pests.
Subject
Health, Toxicology and Mutagenesis,Toxicology
Reference28 articles.
1. Plants in the Genus Tephrosia: Valuable Resources for Botanical Insecticides
2. A review on the phytochemistry and pharmacology of genus Tephrosia;Touqeer;Phytopharmacology,2013
3. Botanical pesticides: An insecticide from plant derivatives;Nayak;Biot. Res. Today,2020
4. Rotenone Residues on Olives and in Olive Oil
5. Microbial bio-pesticides and botanicals as an alternative to synthetic pesticides in the sustainable agricultural production;Manda;Plant Cell Biotechnol. Mol. Biol.,2020
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献