Epigallocatechin Gallate and Glutathione Attenuate Aflatoxin B1-Induced Acute Liver Injury in Ducklings via Mitochondria-Mediated Apoptosis and the Nrf2 Signalling Pathway

Author:

Wang Yanan,Wu Jiayu,Wang Lingfeng,Yang Ping,Liu Zuhong,Rajput Shahid Ali,Hassan Mubashar,Qi DeshengORCID

Abstract

Aflatoxin B1 (AFB1) exists widely in feed and food with severe hazards, posing a serious threat to human and animal health. Epigallocatechin gallate (EGCG) and glutathione (GSH) have been reported as having anti-oxidative and other functions. The present study aimed to investigate the detoxification effect of EGCG and GSH alone or in combination on AFB1 exposure in ducklings. Fifty one-day-old male ducklings were randomly assigned into five experimental groups (n = 10): 1. Control (CTR); 2. 0.3 mg/kg BW AFB1 (AFB1); 3. 0.3 mg/kg BW AFB1 + 100 mg/kg BW EGCG (AFB1 + EGCG); 4. 0.3 mg/kg BW AFB1 + 30 mg/kg BW GSH (AFB1 + GSH); 5. 0.3 mg/kg BW AFB1 + 100 mg/kg BW EGCG + 30 mg/kg BW GSH (AFB1 + EGCG + GSH). The experiment lasted for seven days. Compared with the CTR group, AFB1 reduced growth performance, total serum protein and albumin content, increased serum enzyme activity (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transpeptidase), and caused pathological damage to the ducklings’ livers. AFB1 exposure increased malondialdehyde content and decreased superoxide dismutase, total antioxidant capacity, catalase, glutathione peroxidase activities, and glutathione content in the liver. EGCG and GSH alone or in combination mitigated these adverse effects. Meanwhile, EGCG and GSH attenuate apoptosis of hepatocytes, and regulated AFB1-induced changes in the abundance of genes contained in the Keap1/Nrf2 signalling and apoptotic pathways. Collectively, these results suggest that EGCG and GSH alleviate the hepatocyte injury induced by AFB1 by inhibiting oxidative stress and attenuating excessive mitochondria-mediated apoptosis.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3