Federated Learning for Data Analytics in Education

Author:

Fachola Christian1ORCID,Tornaría Agustín2,Bermolen Paola2ORCID,Capdehourat Germán34ORCID,Etcheverry Lorena1ORCID,Fariello María Inés2ORCID

Affiliation:

1. Instituto de Computación, Facultad de Ingeniería, Universidad de la República, Montevideo 11300, Uruguay

2. Instituto de Matemática, Facultad de Ingeniería, Universidad de la República, Montevideo 11300, Uruguay

3. Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Montevideo 11300, Uruguay

4. Ceibal, Montevideo 11500, Uruguay

Abstract

Federated learning techniques aim to train and build machine learning models based on distributed datasets across multiple devices while avoiding data leakage. The main idea is to perform training on remote devices or isolated data centers without transferring data to centralized repositories, thus mitigating privacy risks. Data analytics in education, in particular learning analytics, is a promising scenario to apply this approach to address the legal and ethical issues related to processing sensitive data. Indeed, given the nature of the data to be studied (personal data, educational outcomes, and data concerning minors), it is essential to ensure that the conduct of these studies and the publication of the results provide the necessary guarantees to protect the privacy of the individuals involved and the protection of their data. In addition, the application of quantitative techniques based on the exploitation of data on the use of educational platforms, student performance, use of devices, etc., can account for educational problems such as the determination of user profiles, personalized learning trajectories, or early dropout indicators and alerts, among others. This paper presents the application of federated learning techniques to a well-known learning analytics problem: student dropout prediction. The experiments allow us to conclude that the proposed solutions achieve comparable results from the performance point of view with the centralized versions, avoiding the concentration of all the data in a single place for training the models.

Funder

Agencia Nacional de Innovación e Investigación (ANII) Uruguay

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Reference25 articles.

1. Ethical and privacy issues in the design of learning analytics applications;Drachsler;ACM International Conference Proceeding Series,2016

2. Learning Analytics: A Systematic Literature Review;Banihashem;Interdiscip. J. Virtual Learn. Med. Sci.,2018

3. Learning Analytics for Learning Design: A Systematic Literature Review of Analytics-Driven Design to Enhance Learning;Mangaroska;IEEE Trans. Learn. Technol.,2019

4. k-anonymity: A model for protecting privacy;Sweeney;Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,2002

5. De-Identification in Learning Analytics;Khalil;J. Learn. Anal.,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3