Solid Particle Erosion Area of Rotor Blades: Application on Small-Size Unmanned Helicopters

Author:

Yao YongmingORCID,Bai Xupeng,Liu Huiying,Li TianyuORCID,Liu Jianbo,Zhou Guangli

Abstract

Rotor blades play an important role in unmanned helicopters, and it is of great significance to study the erosion of rotor blades. In this study, titanium alloy (Ti-4Al-1.5Mn) was used as the helicopter rotor blades’ surface material. The commercial software Ansys-Fluent 18.0 was mainly used to study the erosion of solid particles on the helicopter rotor blades. The moving mesh method and the discrete phase method (DPM) were used to construct an erosion model of the blades at different speeds (500, 1000, or 2000 rpm), and at different particle mass flow rates (0.5, 1, or 1.5 kg/s). The results show that the erosion of helicopter blades is mainly observed at the leading edge and at the tip of the blades. At different particle mass flow rates, greater particle mass flow rates lead to greater DPM erosion rates. As the blade speed increases, the maximum DPM erosion rate decreases, but the severely eroded area increases. Finally, the values of the severely eroded area of the helicopter rotor blades and the ratios of the severely eroded area growth are obtained through the image processing method.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Carbon Particles on Aerodynamic Performance of a Radial Inflow Turbine in Closed Brayton Cycle;Tehnicki vjesnik - Technical Gazette;2023-06-15

2. Investigation of particle erosion of polytetrafluoroethylene and its composites;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2022-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3