Investigation of particle erosion of polytetrafluoroethylene and its composites

Author:

Özzaim Pelin1,Korkusuz Orkan Baran1,Fidan Sinan2,Sınmazçelik Tamer1ORCID

Affiliation:

1. Faculty of Engineering, Mechanical Engineering Department, Kocaeli University, Turkey

2. Faculty of Aeronautics and Astronautics, Department of Airframe & Powerplant Maintenance, Kocaeli University, Turkey

Abstract

Modern-day engineering applications favor polymers and polymer composites on the grounds of their high specific properties. They can offer many different advantages compared to metals; such as high strength-to-weight ratio, ease of production, but their erosion resistance is weaker. In polymer composites, material loss occurs because of high-speed and repeated exposure to erosive particles, therefore service performance and life of the parts are adversely affected. Due to this, it is crucial to predict the particle erosion that may occur in engineering applications and to know the erosive wear behavior of the materials well. Polytetrafluoroethylene and its composites are widely used in tribological applications because of their load-carrying capacity, self-lubricating, and low-density properties, but there is inadequate literature on particle erosion behavior. In this study, particle erosion behaviors of polytetrafluoroethylene, its randomly oriented short glass fiber, and carbon particle and bronze particle-reinforced composites were investigated under different test conditions. Two different types of erosive particles (garnet and alumina) were used to present the effect of erodent type on particle erosion behavior. After particle erosion tests, surface topographies were examined by an optical profilometer, and surface morphologies were examined by scanning electron microscopy. It has been found that the type of reinforcement and the type of erodent significantly affects the particle erosion behavior of polytetrafluoroethylene and its composites.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3