Abstract
The transient search algorithm (TSO) is a new physics-based metaheuristic algorithm that simulates the transient behavior of switching circuits, such as inductors and capacitors, but the algorithm suffers from slow convergence and has a poor ability to circumvent local optima when solving high-dimensional complex problems. To address these drawbacks, an improved transient search algorithm (ITSO) is proposed. Three strategies are introduced to the TSO. First, a chaotic opposition learning strategy is used to generate high-quality initial populations; second, an adaptive inertia weighting strategy is used to improve the exploration ability, exploitation ability, and convergence speed; finally, a neighborhood dimensional learning strategy is used to maintain population diversity with each iteration of merit seeking. The Friedman test and Wilcoxon’s rank sum test were also used by comparing the experiments with recently popular algorithms on 18 benchmark test functions of various types. Statistical results, nonparametric sign tests, and convergence curves all indicate that ITSO develops, explores, and converges significantly better than other popular algorithms, and is a promising intelligent optimization algorithm for applications.
Funder
National Natural Science Foundation of China
Tianjin Natural Science Foundation
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献