Abstract
This paper proposes an energy management strategy for a power-split plug-in hybrid electric vehicle (PHEV) based on reinforcement learning (RL). Firstly, a control-oriented power-split PHEV model is built, and then the RL method is employed based on the Markov Decision Process (MDP) to find the optimal solution according to the built model. During the strategy search, several different standard driving schedules are chosen, and the transfer probability of the power demand is derived based on the Markov chain. Accordingly, the optimal control strategy is found by the Q-learning (QL) algorithm, which can decide suitable energy allocation between the gasoline engine and the battery pack. Simulation results indicate that the RL-based control strategy could not only lessen fuel consumption under different driving cycles, but also limit the maximum discharge power of battery, compared with the charging depletion/charging sustaining (CD/CS) method and the equivalent consumption minimization strategy (ECMS).
Funder
National Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献