Seismic Risk Assessment Using Stochastic Nonlinear Models

Author:

Vargas-Alzate Yeudy,Lantada NievesORCID,González-Drigo Ramón,Pujades LuisORCID

Abstract

The basic input when seismic risk is estimated in urban environments is the expected physical damage level of buildings. The vulnerability index and capacity spectrum-based methods are the tools that have been used most to estimate the probability of occurrence of this important variable. Although both methods provide adequate estimates, they involve simplifications that are no longer necessary, given the current capacity of computers. In this study, an advanced method is developed that avoids many of these simplifications. The method starts from current state-of-the-art approaches, but it incorporates non-linear dynamic analysis and a probabilistic focus. Thus, the method considers not only the nonlinear dynamic response of the structures, modeled as multi degree of freedom systems (MDoF), but also uncertainties related to the loads, the geometry of the buildings, the mechanical properties of the materials and the seismic action. Once the method has been developed, the buildings are subjected to earthquake records that are selected and scaled according to the seismic hazard of the site and considering the probabilistic nature of the seismic actions. The practical applications of the method are illustrated with a case study: framed reinforced concrete buildings that are typical of an important district, the Eixample, in Barcelona (Spain). The building typology and the district were chosen because the seismic risk in Barcelona has been thoroughly studied, so detailed information about buildings’ features, seismic hazard and expected risk is available. Hence, the current results can be compared with those obtained using simpler, less sophisticated methods. The main aspects of the method are presented and discussed first. Then, the case study is described and the results obtained with the capacity spectrum method are compared with the results using the approach presented here. The results at hand show reasonably good agreement with previous seismic damage and risk scenarios in Barcelona, but the new method provides richer, more detailed, more reliable information. This is particularly useful for seismic risk reduction, prevention and management, to move towards more resilient, sustainable cities.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference30 articles.

1. Seismic Fragility Functions via Nonlinear Response History Analysis

2. An Introduction to Probabilistic Seismic Hazard Analysis (PSHA), White Paper, Version 2.1;Baker,2015

3. Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3