Seismic risk assessment of a large metropolitan area by means of simulated earthquakes

Author:

Fischer ElianaORCID,Barreca Giovanni,Greco Annalisa,Martinico Francesco,Pluchino Alessandro,Rapisarda Andrea

Abstract

AbstractThe determination of seismic risk in urban settlements has received increasing attention in the scientific community during the last decades since it allows to identify the most vulnerable portions of urban areas and therefore to plan appropriate strategies for seismic risk reduction. In order to accurately evaluate the seismic risk of urban settlements it should be necessary to estimate in detail the seismic vulnerability of all the existing buildings in the considered area. This task could be very cumbersome due to both the great number of information needed to accurately characterize each building and the huge related computational effort. Several simplified methods for the assessment of the seismic vulnerability of existing buildings have been therefore presented in the literature. In order to estimate the occurrence of damage in buildings due to possible seismic phenomena, the published studies usually refer to response spectra evaluated according to seismic events expected in the territory with assumed probabilities. In the present paper seismic events are instead simulated using a modified Olami–Feder–Christensen (OFC) model, within the framework of self-organized criticality. The proposed methodology takes into account some geological parameters in the evaluation of the seismic intensities perceived by each single building, extending the approach presented in a previous study of some of the authors. Here, a large territory in the Sicilian oriental coast, the metropolitan area of Catania, which includes several urbanized zones with different features, has been considered as a new case study. Applications of the procedure are presented first with reference to seismic sequences of variable intensity, whose occurrence is rather frequent in seismic territories, showing that the damage can be progressively accumulated in the buildings and may lead to their collapse even when the intensities of each single event are moderate. Moreover, statistically significant simulations of single major seismic events, equivalent to a given sequence in terms of produced damages on buildings, are also performed. The latter match well with a novel a-priori risk index, introduced with the aim of characterizing the seismic risk of each single municipality in the considered metropolitan area. The proposed procedure can be applied to any large urbanized territory and, allowing to identify the most vulnerable areas, can represent a useful tool to prioritize the allocation of funds. This could be a novelty for risk policies in many countries in which public subsidies are currently assigned on a case-by-case basis, taking into account only hazard and vulnerability. The use of an a-priori risk index in the allocation process will allow to take into due account the relevant role of exposure.

Funder

Univerity of Catania, Italian Minestry of University and Research

Università degli Studi di Catania

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3