Local Integral Regression Network for Cell Nuclei Detection

Author:

Zhou XiaoORCID,Gu Miao,Cheng ZhenORCID

Abstract

Nuclei detection is a fundamental task in the field of histopathology image analysis and remains challenging due to cellular heterogeneity. Recent studies explore convolutional neural networks to either isolate them with sophisticated boundaries (segmentation-based methods) or locate the centroids of the nuclei (counting-based approaches). Although these two methods have demonstrated superior success, their fully supervised training demands considerable and laborious pixel-wise annotations manually labeled by pathology experts. To alleviate such tedious effort and reduce the annotation cost, we propose a novel local integral regression network (LIRNet) that allows both fully and weakly supervised learning (FSL/WSL) frameworks for nuclei detection. Furthermore, the LIRNet can output an exquisite density map of nuclei, in which the localization of each nucleus is barely affected by the post-processing algorithms. The quantitative experimental results demonstrate that the FSL version of the LIRNet achieves a state-of-the-art performance compared to other counterparts. In addition, the WSL version has exhibited a competitive detection performance and an effortless data annotation that requires only 17.5% of the annotation effort.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3