Dynamic Characteristics Analysis of Gear-Bearing System Considering Dynamic Wear with Flash Temperature

Author:

Xu Jinchi,Li XiaopengORCID,Chen Renzhen,Wang Linlin,Yang Zemin,Yang Hexu

Abstract

The influence of the dynamic wear model considering the tooth contact flash temperature on the dynamic characteristics of a gear-bearing system is studied. Firstly, the meshing stiffness model, based on flash temperature theory, is established. Then, the changing of tooth surface temperature and meshing stiffness in the process of gear meshing is analyzed. Next, the initial tooth surface wear is calculated based on the Archard theory, and the dynamic wear model of the system is established. Finally, the effects of initial wear, friction factors, and damping ratio on the system response are studied. The results show that with the increase of fractal dimension D, the uncertainty and the fluctuation amplitude of backlash decrease, and the meshing force decreases. Therefore, the initial tooth surface wear is reduced, and the stability of the system response with a dynamic wear model is improved; with the increase of the friction coefficient, the tooth surface flash temperature rises, and the root mean square value of the vibration displacement of the system amplifies, which indicates that the system tends to be unstable; with the increase of damping ratio, the system changes from unstable quasi-periodic and chaotic motion to the stable periodic motion. The increase of damping accelerates the energy loss of the system and makes the system prone to be stable.

Funder

the Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3