Decadal Change of Meiyu Onset over Yangtze River and Its Causes

Author:

Qian Yong,Hsu Pangchi,Fu Zhen,Liu Yunyun,Li QiaopingORCID

Abstract

Meiyu onset marks the beginning of the rainfall season in the densely populated Yangtze River Basin, whether the Meiyu initiates early or late in June, and thus has a profound effect on the several hundred million people living there. Applying a Bayesian change-point analysis to data from 1960–2014, we objectively detected an abrupt change of Meiyu onset around 2002. The Meiyu onset date averaged over 2002–2014 was 19 June, delayed by about two weeks compared to that of 1989–2001 (6 June). This decadal change is attributable to the distinct amplitude of moisture transport toward the Yangtze River Basin induced by the changes in climatological intraseasonal oscillation (CISO). The CISO emerges as the annual cycle interacts with the transient intraseasonal perturbations. The wet/dry phases of the CISO are consistent with the climatological active/break stages of the East Asian summer monsoon. In early June, the northwestward-propagating CISO convective/cyclonic anomalies over the western North Pacific (WNP) show weaker amplitude during the earlier-onset epoch compared to the delayed-onset epoch. Thus, relative to the delayed onset epoch, a quasi-barotropic anticyclonic CISO anomaly appears over the WNP in early June during the earlier-onset years. This anticyclonic anomaly was conducive to the westward extension of the WNP subtropical high, conveying warm, moist air from the tropics toward the Yangtze River Basin for the rainy season onset. Model experiments suggest that the decadal changes in WNP CISO intensity were associated with the epochal changes in large-scale background circulation and sea surface temperature over the WNP.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference35 articles.

1. The East Asian summer monsoon: An overview;Ding;Meteor. Atmos. Phys.,2005

2. “China Has Just Contained the Coronavirus. Now It’s Battling Some of the Worst Floods in Decades”https://edition.cnn.com/2020/07/14/asia/china-flood-coronavirus-intl-hnk/index.html

3. Multiscale Variability of Meiyu and Its Prediction: A New Review

4. Monsoon Meteorology;Chang,1987

5. Multi-Scale Features of the Meiyu-Baiu Front and Associated Precipitation Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3