Root Endophytic Fungal Community and Carbon and Nitrogen Stable Isotope Patterns Differ among Bletilla Species (Orchidaceae)

Author:

Zeng Xinhua,Ni Ziyi,Diao Haixin,Jiang Kai,Hu Chao,Shao Li,Huang Weichang

Abstract

Orchids of the genus Bletilla are well-known ornamental plants and sources of traditional medicine in Asia that rely on the symbiotic relationship with root endophytic fungi throughout their whole life cycle. However, little is known about their fungal partners, infection pattern, and pathways of carbon gain. We investigated carbon and nitrogen stable isotope patterns in different organs of three Bletilla species, identified the root endophytic fungal community composition, and determined mycorrhizal colonization rates. The three Bletilla species were comprised by a polyphyletic group which belongs to different trophic modes, such as saprotroph, pathotroph, and symbiotroph; however, the dominant species and their abundances varied among Bletilla spp. Mycorrhizal infection rates also varied among Bletilla species, with B. striata (65% ± 25%) being significantly higher than those of B. formosana (35% ± 16%) and B. ochracea (22% ± 13%). Compared with surrounding autotrophic plants, all Bletilla spp. were significantly enriched in 13C with B. striata to a significantly higher level than other two Bletilla species. Among different organs, stems had higher δ13C values, while leaves and flowers had higher δ15N and total N content values across all three species. Our results indicate that the symbiotic relationship of Bletilla and its root endophytic fungi is not strictly specific. Although mycorrhizal infection rates were highly variable, the three Bletilla species had the same infection pattern with hyphae penetrating the cortex cell by the pathway cell. Different Bletilla species have different strategies for C allocation among plant organs. These findings provide new insights into the ecological adaptation of orchids and will contribute to Bletilla germplasm conservation and sustainable utilization.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3