Author:
Jiawen Chen,Yuan Wu,Xin Zhuang,Junjie Guo,Xing Hu,Jinglei Xiao
Abstract
Abstract
Background
Rhizosphere fungi and endophytic fungi play key roles in plant growth and development; however, their role in the growth of Epimedium koreanum Nakai at different stages remains unclear. Here, we used the Illumina MiSeq system, a high-throughput sequencing technology, to study the endophytic fungi and rhizosphere microbiome of Korean Epimedium.
Results
Epimedium koreanum Nakai rhizosphere soil and leaves had highly diverse fungal communities during the growth process. The relative abundance of soil fungi in the rhizosphere stage was higher than that of leaf endophytic fungi in the early growth stage, but the overall abundance was basically equal. Sebacina is a significantly divergent fungal genera, and Sebacina sp. are present among leaf fungi species in the rhizosphere soil of Epimedium koreanum Nakai. Sebacina sp. can move to each other in rhizosphere soil fungi and leaf endophytes. VIF (variance inflation factor) analysis showed that soluble salt, whole nitrogen, alkaline lysis nitrogen, whole phosphorus, total potassium, and fast-acting potassium are useful environmental factors for rhizosphere soil and leaf endophytic fungi: potassium, total nitrogen, whole phosphorus, and three environmental factors were significantly and positively associated with the relative abundance of Sebacina sp.
Conclusions
(1) This study is the first to clarify the species diversity of fungi in Epimedium koreanum Nakai leaf and rhizosphere soil. (2) Different fungal communities of rhizosphere soil fungi and leaf endophytic fungi at different growth stages of Epimedium koreanum Nakai were examined. (3) Sebacina sp. can move to each other between rhizosphere soil fungi and leaf endophytic fungi. (4) Nitrogen, phosphorus and potassium elements in the environment have a significant positive effect on the relative abundance of Sebacina sp.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Applied Microbiology and Biotechnology,Microbiology
Reference69 articles.
1. Philippot L, Raaijmakers JM, Lemanceau P, Van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–99.
2. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 2009;321:341–61.
3. Cho WK, Kim H, Choi YJ, Yim NH, Yang HJ, Ma JY. Epimedium koreanum Nakai water extract exhibits antiviral activity against porcine epidermic diarrhea virus In vitro and In vivo. Evid Based Complement Alternat Med. 2008;2012: 985151.
4. Ladygina N, Hedlund K. Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol Biochem. 2010;42:162–8.
5. Burns JH, Anacker BL, Strauss SY, Burke DJ. Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB Plants. 2015;7:plv030.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献