Author:
Kamalova ,Navruzov ,Qian ,Lee
Abstract
In this paper, we used multi-objective optimization in the exploration of unknown space. Exploration is the process of generating models of environments from sensor data. The goal of the exploration is to create a finite map of indoor space. It is common practice in mobile robotics to consider the exploration as a single-objective problem, which is to maximize a search of uncertainty. In this study, we proposed a new methodology of exploration with two conflicting objectives: to search for a new place and to enhance map accuracy. The proposed multiple-objective exploration uses the Multi-Objective Grey Wolf Optimizer algorithm. It begins with the initialization of the grey wolf population, which are waypoints in our multi-robot exploration. Once the waypoint positions are set in the beginning, they stay unchanged through all iterations. The role of updating the position belongs to the robots, which select the non-dominated waypoints among them. The waypoint selection results from two objective functions. The performance of the multi-objective exploration is presented. The trade-off among objective functions is unveiled by the Pareto-optimal solutions. A comparison with other algorithms is implemented in the end.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献