Abstract
Significance: The study of the effects and pathways of catechol and pyrogallic acid on soil organic carbon mineralization has a positive effect on mastering soil carbon transformation. Methods and objectives: In this study, we took 0–20 cm soil from Pinus tabulaeformis forest as an object to investigate the effects of catechol and pyrogallic acid with different concentrations on soil organic carbon mineralization through a 60-day mineralization incubation test. The soil active carbon content and changes in soil microbial diversity and community composition were analyzed by using single exponential fitting, quantitative PCR, and high-throughput sequencing to explore the influencing mechanisms of catechol and pyrogallic acid on soil organic carbon excitation. Results: Catechol and pyrogallic acid had the effect of enhancing the soil organic carbon mineralization and soil active carbon content, and the higher the concentration, the stronger the enhancement effect. Catechol reduced the Ace index, Chao1 index, and Shannon index of bacteria and fungi, and further changed the relative abundance of two dominant groups (Proteobacteria and Acidobacteriota) in bacteria and Basidiomycota in fungi at high concentrations. There was no obvious regularity in the effects of pyrogallic acid on bacteria and fungi, but the Ace index and Chao1 index of bacteria underwent drastic and disordered changes. Conclusions: Catechol and pyrogallic acid can trigger positive excitation of the soil organic carbon through two pathways: increasing the soil active carbon content and modulating soil microorganisms, but the way they modulate soil microorganisms are different. Catechol regulates soil microorganisms by reducing the number, richness, and evenness of the bacteria and fungi species, as well as the community composition, while the way pyrogallic acid regulates only closely relates to the changes in the number, richness, and evenness of bacteria species.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献