Effect of Two Exogenous Organic Acids on the Excitation Effect of Soil Organic Carbon in Beijing, China

Author:

Xiao Yongli,Yu Yanni,Wang Yue,Wang Xuqin,Wang Yuanyuan,Dai Wei,Luan YaningORCID

Abstract

Significance: The study of the effects and pathways of catechol and pyrogallic acid on soil organic carbon mineralization has a positive effect on mastering soil carbon transformation. Methods and objectives: In this study, we took 0–20 cm soil from Pinus tabulaeformis forest as an object to investigate the effects of catechol and pyrogallic acid with different concentrations on soil organic carbon mineralization through a 60-day mineralization incubation test. The soil active carbon content and changes in soil microbial diversity and community composition were analyzed by using single exponential fitting, quantitative PCR, and high-throughput sequencing to explore the influencing mechanisms of catechol and pyrogallic acid on soil organic carbon excitation. Results: Catechol and pyrogallic acid had the effect of enhancing the soil organic carbon mineralization and soil active carbon content, and the higher the concentration, the stronger the enhancement effect. Catechol reduced the Ace index, Chao1 index, and Shannon index of bacteria and fungi, and further changed the relative abundance of two dominant groups (Proteobacteria and Acidobacteriota) in bacteria and Basidiomycota in fungi at high concentrations. There was no obvious regularity in the effects of pyrogallic acid on bacteria and fungi, but the Ace index and Chao1 index of bacteria underwent drastic and disordered changes. Conclusions: Catechol and pyrogallic acid can trigger positive excitation of the soil organic carbon through two pathways: increasing the soil active carbon content and modulating soil microorganisms, but the way they modulate soil microorganisms are different. Catechol regulates soil microorganisms by reducing the number, richness, and evenness of the bacteria and fungi species, as well as the community composition, while the way pyrogallic acid regulates only closely relates to the changes in the number, richness, and evenness of bacteria species.

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3