Soil Organic Carbon in Sandy Paddy Fields of Northeast Thailand: A Review

Author:

Arunrat NoppolORCID,Kongsurakan PraeployORCID,Sereenonchai Sukanya,Hatano RyusukeORCID

Abstract

Soil organic carbon (SOC) improvement has become a sustainable strategy for enhancing soil resilience and reducing greenhouse gas (GHG) emissions in the rice cropping system. For tropical soils, the SOC accumulation was limited by the unfavorable environment, likely the sandy soil area in Northeast (NE) Thailand. This review aims to quantify and understand SOC in sandy paddy fields of NE Thailand. The existing research gap for alternative management practices is also highlighted to increase ecological and agronomic values. We review previous studies to determine the factors affecting SOC dynamics in sandy paddy fields, in order to enhance SOC and sustain rice yields. High sand content, up to 50% sand, was found in 70.7% of the observations. SOC content has ranged from 0.34 to 31.2 g kg−1 for the past four decades in paddy rice soil of NE Thailand. The conventional and alternative practice managements were chosen based on either increasing rice crop yield or improving soil fertility. The lack of irrigation water during the mild dry season would physically affect carbon sequestration as the soil erosion accelerates. Meanwhile, soil chemical and microbial activity, which directly affect SOC accumulation, would be influenced by nutrient and crop residue management, including chemical fertilizer, manure and green manure, unburned rice straw, and biochar application. Increasing SOC content by 1 g kg−1 can increase rice yield by 302 kg ha−1. The predicted carbon saturation varied tremendously, from 4.1% to 140.6% (52% in average), indicating that the sandy soil in this region has the potential for greater SOC sequestration. Our review also suggests that broadening the research of rice production influenced by sandy soil is still required to implement adaptive management for sustainable agriculture and future food security.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference120 articles.

1. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales

2.  Role of soil multifunctionality in sustainable development

3. A systemic approach for modeling soil functions

4. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Commitee and the Commitee of the Regions, Thematic Strategy for Soil Protection,2006

5. Soil Security in Sustainable Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3