Influence of PPD and Mass Scaling Parameter on the Goodness of Fit of Dry Ice Compaction Curve Obtained in Numerical Simulations Utilizing Smoothed Particle Method (SPH) for Improving the Energy Efficiency of Dry Ice Compaction Process

Author:

Górecki Jan1ORCID,Berdychowski Maciej1ORCID,Gawrońska Elżbieta2ORCID,Wałęsa Krzysztof1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Institute of Machine Design, Poznan University of Technology, 60-965 Poznań, Poland

2. Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Dabrowskiego 69, 42-201 Czestochowa, Poland

Abstract

The urgent need to reduce industrial electricity consumption due to diminishing fossil fuels and environmental concerns drives the pursuit of energy-efficient production processes. This study addresses this challenge by investigating the Smoothed Particle Method (SPH) for simulating dry ice compaction, an intricate process poorly addressed by conventional methods. The Finite Element Method (FEM) and SPH have been dealt with by researchers, yet a gap persists regarding SPH mesh parameters’ influence on the empirical curve fit. This research systematically explores Particle Packing Density (PPD) and Mass Scaling (MS) effects on the agreement between simulation and experimental outputs. The Sum of Squared Errors (SSE) method was used for this assessment. By comparing the obtained FEM and SPH results under diverse PPD and MS settings, this study sheds light on the SPH method’s potential in optimizing the dry ice compaction process’s efficiency. The SSE based analyses showed that the goodness of fit did not vary considerably for PDD values of 4 and up. In the case of MS, a better fit was obtained for its lower values. In turn, for the ultimate compression force FC, an empirical curve fit was obtained for PDD values of 4 and up. That said, the value of MS had no significant bearing on the ultimate compression force FC. The insights gleaned from this research can largely improve the existing sustainability practices and process design in various energy-conscious industries.

Funder

National Centre for Research and Development in Poland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3