Computer Aided Modeling of Wood Chips Transport by Means of a Belt Conveyor with Use of Discrete Element Method

Author:

Gierz ŁukaszORCID,Warguła ŁukaszORCID,Kukla MateuszORCID,Koszela KrzysztofORCID,Zwiachel Tomasz Szymon

Abstract

The effectiveness and precision of transporting wood chips on the transport trailer or hopper depends on an inclination angle, a conveyor belt speed, and length. In order to devise a methodology aiding designing and the selection of technical and performance parameters (aiding the settings of conveyor belt sub-assemblies), the authors carried out the simulation tests concerning wood chips transport on the belt conveyor and their outlet. For the purposes of these tests, a simulation model was performed in the Rocky DEM (discrete element method) software in the numerical analysis environment and compared to analytical tests. The tested wood chips were taken from cherry plum branches chipping processes (Prunus cerasifera Ehrh. Beitr. Naturk. 4:17. 1789 (Gartenkalender 4:189-204. 1784)), out of which seven basic fractions were separated, which differed mainly in terms of their diameter from 5 mm to 50 mm and the length of 150 mm. The article presents the results of wood chips ejection distance in the form of the 3D functions of wood chips ejection distance depending on the conveyor belt inclination angle and belt speed. The results are presented for five conveyor belt lengths (1 m, 2 m, 3 m, 4 m, 5 m). The tests also involved the conveyor belt inclination angle in the range from 10° to 50° and the belt velocity in the range from 1 m/s2 to 5 m/s2. The numerical test results demonstrate higher average values of wood chips ejection distance than designated in the analytical model. The average arithmetical difference in the results between the numerical and analytical model is at the level of 13%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3