Abstract
Basic knowledge about the factors and mechanisms affecting the performance of solar cells and their identification is essential when thinking of future improvements to the device. Within this paper, we investigated the current transport mechanism in GaAsN p-i-n solar cells grown with atmospheric pressure metal organic vapour phase epitaxy (AP-MOVPE). We examined the electro-optical and structural properties of a GaAsN solar cell epitaxial structure and correlated the results with temperature-dependent current-voltage measurements and deep level transient spectroscopy findings. The analysis of J-V-T measurements carried out in a wide temperature range allows for the determination of the dominant current transport mechanism in a GaAsN-based solar cell device and assign it a nitrogen interstitial defect, the presence of which was confirmed by DLTFS investigation.
Funder
Politechnika Wrocławska
Narodowa Agencja Wymiany Akademickiej
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
Agentúra na Podporu Výskumu a Vývoja
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献