A Comparison of Lane Marking Detection Quality and View Range between Daytime and Night-Time Conditions by Machine Vision

Author:

Babić Darko,Babić Dario,Fiolić Mario,Eichberger ArnoORCID,Magosi Zoltan Ferenc

Abstract

Lateral support systems in vehicles have a high potential for reduction of lane departure crashes. To profit from their full potential, such systems should function properly in adverse conditions. Literature indicates that their accuracy varies between day and night-time. However, detailed quantifications of the systems’ performance in these conditions are rare. The aim of this study is to investigate the differences in detection quality and view range of Mobileye 630 in dry daytime and night-time conditions. On-road tests on four rural road sections in Croatia were conducted. Wilcoxon signed-rank test was used to test the difference between the number of quality rankings while absolute average, average difference and standard deviation were used to analyse the view range. Also, a paired samples t-test was used to test the difference between conditions for each line on each road. The overall results confirm that a significant difference in lane detection quality view range exists between tested conditions. “Medium” and “high” detection confidence (quality level 3 and 2), increased by 5% and 8% during night-time compared to daytime while level 0 (“nothing detected”) decreased by 12%. The view range increased (almost 16% for middle line) during daytime compared to night-time. The findings of this study expand the existing knowledge and are valuable for research and development of machine-vision systems but also for road authorities to optimize the markings’ quality performance.

Funder

Sveučilište u Zagrebu

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference28 articles.

1. Analysis of Roadway Traffic Accidents Based on Rough Sets and Bayesian Networks

2. Best Practices in Lane-Departure Avoidance and Traffic Calming. Project 20-68A, USAhttp://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP20-68A_09-03.pdf

3. Driving down Lane-Departure Crashes. Report, USAhttp://www.virginiadot.org/business/resources/LocDes/Lane_Departures_PLD-1.pdf

4. Road Markings and Their Impact on Driver Behaviour and Road Safety: A Systematic Review of Current Findings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3