Fault Detection of Induction Motors with Combined Modeling- and Machine-Learning-Based Framework

Author:

Benninger Moritz1ORCID,Liebschner Marcus1ORCID,Kreischer Christian2ORCID

Affiliation:

1. Faculty of Electronics and Computer Science, University of Applied Sciences Aalen, 73430 Aalen, Germany

2. Chair for Electrical Machines and Drive Systems, Helmut Schmidt University, 22043 Hamburg, Germany

Abstract

This paper deals with the early detection of fault conditions in induction motors using a combined model- and machine-learning-based approach with flexible adaptation to individual motors. The method is based on analytical modeling in the form of a multiple coupled circuit model and a feedforward neural network. In addition, the differential evolution algorithm independently identifies the parameters of the motor for the multiple coupled circuit model based on easily obtained measurement data from a healthy state. With the identified parameters, the multiple coupled circuit model is used to perform dynamic simulations of the various fault cases of the specific induction motor. The simulation data set of the stator currents is used to train the neural network for classification of different stator, rotor, mechanical, and voltage supply faults. Finally, the combined method is successfully validated with measured data of faults in an induction motor, proving the transferability of the simulation-trained neural network to a real environment. Neglecting bearing faults, the fault cases from the validation data are classified with an accuracy of 94.81%.

Funder

the Federal Ministry for Economic Affairs and Climate Action

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3