Optimization of Practicality for Modeling- and Machine Learning-Based Framework for Early Fault Detection of Induction Motors

Author:

Benninger Moritz1ORCID,Liebschner Marcus1ORCID

Affiliation:

1. Faculty of Electronics and Computer Science, Aalen University of Applied Sciences, 73430 Aalen, Germany

Abstract

This paper addresses the further development and optimization of a modeling- and machine learning-based framework for early fault detection and diagnosis in induction motors. The goal behind the multi-level framework is to provide a pragmatic and practical approach for the autonomous monitoring of electrical machines in various industrial applications. The main contributions of this paper include the elimination of a fingerprint measurement in the processing of the framework and the development of a generalized model for fault detection and diagnosis. These aspects allow the training of neural networks with a simulated data set before even knowing the specific induction motor to be monitored. The pre-trained feed-forward neural networks enable the detection of several electrical and mechanical faults in a real induction motor with an overall accuracy of 99.56%. Another main contribution is the extension of the methodology to a larger operating range. As a result, various faults in a real induction motor can be detected under different load conditions with accuracies of over 92%. As a further part of the paper, a concept for a prototype is presented, which enables the autonomous and practice-friendly application of the framework.

Funder

Aalen University of Applied Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3