Abstract
Coal combustion is an anthropogenic source of mercury (Hg) emissions to the atmosphere. The strong toxicity and bioaccumulation potential have prompted attention to the control of mercury emissions. Pyrolysis has been regarded as an efficient Hg removal technology before coal combustion and other utilization processes. In this work, the Hg speciation in coal and its thermal stability were investigated by combined sequential chemical extraction and temperature programmed decomposition methods; the effect of coal rank on Hg speciation distribution and Hg release characteristics were clarified based on the weight loss of coal; the amount of Hg released; and the emission of sulfur-containing gases during coal pyrolysis. Five species of mercury were determined in this study: exchangeable Hg (F1), carbonate + sulfate + oxide bound Hg (F2), silicate + aluminosilicate bound Hg (F3), sulfide bound Hg (F4), and residual Hg (F5), which are quite distinct in different rank coals. Generally, Hg enriched in carbonates, sulfates, and oxides might migrate to sulfides with the transformation of minerals during the coalification process. The order of thermal stability of different Hg speciation in coal is F1 < F5 < F2 < F4 < F3. Meanwhile, the release of Hg is accompanied with sulfur gases during coal pyrolysis, which is heavily dependent on the coal rank.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献