Mercury Migration Behavior from Flue Gas to Fly Ashes in a Commercial Coal-Fired CFB Power Plant

Author:

Li Xiaohang,Teng YangORCID,Zhang Kai,Peng Hao,Cheng Fangqin,Yoshikawa Kunio

Abstract

Mercury (Hg) emissions from coal-fired power plants are of increasing concern around the world. In this study, field tests were carried out to understand the Hg emission characteristics and its migration behaviors in a commercial CFB boiler unit with the electricity generation capacity of 25 MW. This boiler is equipped with one electrostatic precipitator (ESP) and two fabric filters (FFs) in series for removing particulates from the flue gas. The EPA 30B method was used for simultaneous flue gas Hg sampling at the inlet of the ESP and the outlet of the second FF. The Hg mass balance in the range of 104.07% to 112.87% was obtained throughout the CFB unit by measuring the Hg contents in the feed fuel, the fly ash and the bottom ash, as well as in the flue gas at the outlet of the particulate control device (PCD) system. More than 99% of Hg contained in the feed fuel was captured by the fly ash, whilst less than 1% of Hg was remained in the bottom ash or the flue gas after passing the PCD system. The gaseous Hg obviously migrated from the flue gas to the fly ash in the air pre-heater, where the flue gas temperature decreased from 250 °C at the inlet to 120 °C at the outlet. Other gaseous Hg migrated from the flue gas to the fly ash in the PCD system, as the Hg concentrations in the flue gas ranged from 3.14 to 4.14 μg/m3 at the inlet of the ESP and ranged from 0.30 to 0.36 μg/m3 at the outlet of the second FF. The average Hg contents in the fly ash samples collected from the ESP, the first FF and the second FF were 912.3, 1313.6 and 1464.9 ng/g, respectively, while the mean particle diameters of these fly ash samples tend to decrease along the flow pass in the PCD system. Compared to large fly ash particles, smaller fly ash particles exhibit higher Hg capture performance due to their high unburned carbon (UBC) content and large specific surface area. The migration of gaseous Hg from the flue gas to the fly ash downstream of the CFB boiler unit was easier than that downstream of the PC boiler unit due to high UBC content and specific surface area.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3