Abstract
A casing treatment using inclined oblique slots (INOS) is proposed to improve the stability of the single-stage transonic axial compressor, NASA Stage 37, during operation. The slots are installed on the casing of the rotor blades. The aerodynamic performance was estimated using three-dimensional steady Reynolds-Averaged Navier-Stokes analysis. The results showed that the slots effectively increased the stall margin of the compressor with slight reductions in the pressure ratio and adiabatic efficiency. Three geometric parameters were tested in a parametric study. A single-objective optimization to maximize the stall margin was carried out using a Genetic Algorithm coupled with a surrogate model created by a radial basis neural network. The optimized design increased the stall margin by 37.1% compared to that of the smooth casing with little impacts on the efficiency and pressure ratio.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献