Effect of different axial deflected angles of reversed blade-angle slots on the axial flow compressor performance and stability

Author:

Zhang Haoguang1ORCID,Zhong Xinyi1ORCID,Wang Enhao2ORCID,Zhang Chiyuan1,Chu Wuli1

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an, China

2. AVIC Shenyang Engine Design Institute, Shenyang, China

Abstract

The aim of the paper is to explore the influence of the reversed blade-angle slot casing treatment (RBSCT) and its axial deflected angle (ADA) on the compressor performance and stability, and to reveal the mechanism that the change in ADA of the RBSCT influences the effect to broaden the compressor stable working range. The NASA Rotor 35 is used as the object of the investigation, and four RBSCTs with ADA of −15°, −30°, −45° and −60° are designed and investigated by unsteady numerical simulation. The results show that as the absolute value of the axial deflected angle increases, the capacity to improve the compressor stability of the RBSCT increases and then decreases. The unsteadiness of the injection and suction flows formed by the reversed blade angle slot plays an important role in the removal of the low-velocity zone. When ADA is −30°, the unsteadiness amplitude of the injection and suction flows is significantly higher than those of the other three. Consequently, the RBSCT with −30° ADA obtains the maximum stall margin improvement of 17.41% and the maximum design point efficiency improvement of 1.06% among the four RBSCTs.

Funder

Fundamental Research Funds for the Central Universities

National Science and Technology Major Project

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Reference25 articles.

1. Epstein AH, Williams J, Greitzer EM, et al. Active suppression of compressor instabilities. Aiaa Paper. AIAA-86-1994.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3