Abstract
Piezoelectric energy harvesters have attracted much attention because they are crucial in portable industrial applications. Here, we report on a high-power device based on a magneto-mechanical piezoelectric energy harvester to scavenge the AC magnetic field from a power-line cable for industrial applications. The electrical output performance of the harvester (×4 layers) reached an output voltage of 60.8 Vmax, an output power of 215 mWmax (98 mWrms), and a power density of 94.5 mWmax/cm3 (43.5 mWrms/cm3) at an impedance matching of 5 kΩ under a magnetic field of 80 μT. The multilayer energy harvester enables high-output performance, presenting an obvious advantage given this improved level of output power. Finite element simulations were also performed to support the experimental observations. The generator was successfully used to power a wireless sensor network (WSN) for use on an IoT device composed of a temperature sensor in a thermal power station. The result shows that the magneto-mechanical piezoelectric energy harvester (MPEH) demonstrated is capable of meeting the requirements of self-powered monitoring systems under a small magnetic field, and is quite promising for use in actual industrial applications.
Funder
The Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献