Structure-Circuit Resistor Integrated Design Optimization of Piezoelectric Energy Harvester Considering Stress Constraints

Author:

Kim Taekyun1,Kim Jihoon1,Lee Tae Hee1

Affiliation:

1. Department of Automotive Engineering, Hanyang University, Seoul 04763, Republic of Korea

Abstract

A piezoelectric energy harvester (PEH) transduces mechanical energy into electrical energy, which can be utilized as an energy source for self-powered or low-power devices. Therefore, maximizing the power of a PEH is a crucial design objective. It is well known that structural designs are firstly conducted for controlling resonance characteristics, and then circuit designs are pursued through impedance matching for improving power. However, a PEH contains solid mechanics, electrostatics, and even a circuit-coupled multi-physics system. Therefore, this research aims to design a PEH considering a circuit-coupled multi-physics. As a design process, a conceptual design is developed by topology optimization, and a detailed design is developed sequentially by applying size optimization as a post-processing step to refine the conceptual design results for manufacturable design. In the two optimization processes, design optimizations of a structure coupled with circuit resistor are performed to maximize the power, where the electrical and mechanical interactions between PZT, substrate, and circuit resistor are simultaneously considered. Additionally, stress constraints are also added for structural safety to ensure operational life of PEH. As a result of the proposed design methodology, a manufacturable design of PEH having maximum power and operational life is obtained with power density of 6.61 μWg−2mm−3.

Funder

Agency for Defense Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3