Affiliation:
1. Department of Automotive Engineering, Hanyang University, Seoul 04763, Republic of Korea
Abstract
A piezoelectric energy harvester (PEH) transduces mechanical energy into electrical energy, which can be utilized as an energy source for self-powered or low-power devices. Therefore, maximizing the power of a PEH is a crucial design objective. It is well known that structural designs are firstly conducted for controlling resonance characteristics, and then circuit designs are pursued through impedance matching for improving power. However, a PEH contains solid mechanics, electrostatics, and even a circuit-coupled multi-physics system. Therefore, this research aims to design a PEH considering a circuit-coupled multi-physics. As a design process, a conceptual design is developed by topology optimization, and a detailed design is developed sequentially by applying size optimization as a post-processing step to refine the conceptual design results for manufacturable design. In the two optimization processes, design optimizations of a structure coupled with circuit resistor are performed to maximize the power, where the electrical and mechanical interactions between PZT, substrate, and circuit resistor are simultaneously considered. Additionally, stress constraints are also added for structural safety to ensure operational life of PEH. As a result of the proposed design methodology, a manufacturable design of PEH having maximum power and operational life is obtained with power density of 6.61 μWg−2mm−3.
Funder
Agency for Defense Development
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction