Multi-Object Trajectory Prediction Based on Lane Information and Generative Adversarial Network

Author:

Guo Lie12,Ge Pingshu3ORCID,Shi Zhenzhou1

Affiliation:

1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

2. Ningbo Institute, Dalian University of Technology, Ningbo 315016, China

3. College of Mechanical & Electronic Engineering, Dalian Minzu University, Dalian 116600, China

Abstract

Nowadays, most trajectory prediction algorithms have difficulty simulating actual traffic behavior, and there is still a problem of large prediction errors. Therefore, this paper proposes a multi-object trajectory prediction algorithm based on lane information and foresight information. A Hybrid Dilated Convolution module based on the Channel Attention mechanism (CA-HDC) is developed to extract features, which improves the lane feature extraction in complicated environments and solves the problem of poor robustness of the traditional PINet. A lane information fusion module and a trajectory adjustment module based on the foresight information are developed. A socially acceptable trajectory with Generative Adversarial Networks (S-GAN) is developed to reduce the error of the trajectory prediction algorithm. The lane detection accuracy in special scenarios such as crowded, shadow, arrow, crossroad, and night are improved on the CULane dataset. The average F1-measure of the proposed lane detection has been increased by 4.1% compared to the original PINet. The trajectory prediction test based on D2-City indicates that the average displacement error of the proposed trajectory prediction algorithm is reduced by 4.27%, and the final displacement error is reduced by 7.53%. The proposed algorithm can achieve good results in lane detection and multi-object trajectory prediction tasks.

Funder

National Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3