On the Road: Route Proposal from Radar Self-Supervised by Fuzzy LiDAR Traversability

Author:

Broome Michael,Gadd MatthewORCID,De Martini DanieleORCID,Newman Paul

Abstract

This is motivated by a requirement for robust, autonomy-enabling scene understanding in unknown environments. In the method proposed in this paper, discriminative machine-learning approaches are applied to infer traversability and predict routes from Frequency-Modulated Contunuous-Wave (FMCV) radar frames. Firstly, using geometric features extracted from LiDAR point clouds as inputs to a fuzzy-logic rule set, traversability pseudo-labels are assigned to radar frames from which weak supervision is applied to learn traversability from radar. Secondly, routes through the scanned environment can be predicted after they are learned from the odometry traces arising from traversals demonstrated by the autonomous vehicle (AV). In conjunction, therefore, a model pretrained for traversability prediction is used to enhance the performance of the route proposal architecture. Experiments are conducted on the most extensive radar-focused urban autonomy dataset available to the community. Our key finding is that joint learning of traversability and demonstrated routes lends itself best to a model which understands where the vehicle should feasibly drive. We show that the traversability characteristics can be recovered satisfactorily, so that this recovered representation can be used in optimal path planning, and that an end-to-end formulation including both traversability feature extraction and routes learned by expert demonstration recovers smooth, drivable paths that are comprehensive in their coverage of the underlying road network. We conclude that the proposed system will find use in enabling mapless vehicle autonomy in extreme environments.

Publisher

MDPI AG

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3