Model Study on Burden Distribution in COREX Melter Gasifier

Author:

Li HaifengORCID,Zou Zongshu,Luo Zhiguo,Shao Lei,Liu Wenhui

Abstract

COREX is one of the commercialized smelting reduction ironmaking processes. It mainly includes two reactors, i.e., a (reduction) shaft furnace (SF) and a melter gasifier (MG). In comparison with the conventional blast furnace (BF), the COREX MG is not only equipped with a more complicated top charging system consisting of one gimbal distributor for coal and eight flap distributors for direct reduction iron (DRI), but also the growth mechanism of its burden pile is in a developing phase, rather than that in a fully-developed phase in a BF. Since the distribution of charged burden plays a crucial role in determining the gas flow and thus in achieving a stable operation, it is of considerable importance to investigate the burden distribution influenced by the charging system of COREX MG. In the present work, a mathematical model is developed for predicting the burden distribution in terms of burden layer structure and radial ore/coal ratio within the COREX MG. Based on the burden pile width measured in the previous physical experiments at different ring radii on a horizontal flat surface, a new growth mechanism of burden pile is proposed. The validity of the model is demonstrated by comparing the simulated burden layer structure with the corresponding results obtained by physical experiments. Furthermore, the usefulness of the mathematical model is illustrated by performing a set of simulation cases under various charging matrixes. It is hoped that the model can be used as a what-if tool in practice for the COREX operator to gain a better understanding of burden distribution in the COREX MG.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3