Effect of Backsheet Properties on PV Encapsulant Degradation during Combined Accelerated Aging Tests

Author:

Mansour Djamel EddineORCID,Barretta ChiaraORCID,Pitta Bauermann LucianaORCID,Oreski GernotORCID,Schueler Andreas,Philipp Daniel,Gebhardt PaulORCID

Abstract

Long-term photovoltaic (PV) module reliability is highly determined by the durability of the polymeric components (backsheet and encapsulation materials). This paper presents the result of experiments on encapsulant degradation influenced by the backsheet permeation properties. Towards this goal, one type of ethylene/vinyl acetate copolymer (EVA) was aged in glass/EVA/backsheet laminates in accelerated aging tests (up to 4000 h for Damp-Heat (DH) and up to 480 kWh/m2 for UV and UV-DH combined). The samples contained three backsheets with different permeation properties to examine their impact on EVA degradation. Thermal and chemical characterization shows that the EVA degradation is stronger with the glass–EVA–polyamide (PA)-based backsheet than with the polyethylene terephthalate (PET)-based backsheets. The higher oxygen transmission rate (OTR) of the PA-based backsheet may increase photo-oxidation and aggravating the degradation of EVA in the laminates. Furthermore, FTIR results were used to demonstrate the effect of damp heat exposure on the EVA interfaces, showing an accelerated degradation at the glass–EVA interface. The comparison of accelerated aging stress factors reveals that EVA suffers the strongest chemical and optical degradation when high UV, high temperature and high relative humidity are combined simultaneously.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3